Propane as a Solution to Meeting Code and Above-Code Programs – Using High Efficiency Propane Systems as a Compliance Strategy

Nothing is driving greater change in the home building industry than energy efficiency, but prior to 2015 the International Energy Conservation Code (IECC) didn’t address mechanical equipment such as furnaces and water heaters. The 2015 IECC now includes a new compliance path called the Energy Rating Index allowing builders more choices in how to meet the energy code. This course will take a closer look at how high efficiency propane equipment such as furnaces and water heaters provide flexibility in meeting 2015 IECC standards and help reduce a home’s HERS Index, in addition to helping projects gain points in above-code programs such as LEED and the National Green Building Standard.

Register

Propane-Enabled Solutions for Commercial Buildings in Rural Areas

This course will discuss how architects and business owners can achieve outstanding performance and low-cost operation by incorporating high-efficiency, low-emission propane appliances into commercial new builds or retrofits.

We will discuss the challenges of designing commercial buildings in rural areas, especially those that do not have natural gas service, and how propane can help to meet resilience and sustainability goals, and maximize health, wellness, and occupant comfort. In addition, this course will explore applications for propane in different commercial building types, as well as case studies where propane was used.

Register

Expanding Outdoor Living: Propane for Outdoor Residential Use

Propane gas is considered to be a clean alternative fuel by the EPA; it is a versatile and environmentally safe fuel source for healthy and sustainable living. Many people use propane to fuel their outdoor grills or barbecues, but its much more versatile than a cooking fuel in residential outdoor applications. This learning unit will explore alternative uses for propane, specifically for outdoor use in and around a home.

Register

Architecting Change: Design Strategies for a Healthy, Resilient, Climate Smart Future (Print Course)

Over the past decade, the architectural, construction and engineering (AEC) sector has grappled with unprecedented technological and socioeconomic changes along with an unprecedented confluence of challenges to the health of our communities, our cities and our planet. Climate change is accelerating—the 10 years leading up to 2020 was the warmest decade on record. Buildings and their construction account for 39% of global carbon dioxide emissions. At the same time, the built environment is growing at a record pace in the United States.

It is estimated that 2.5 million new housing units are needed to make up for the nation’s housing shortage, a trend that has not abated in the face of a global pandemic. Economically, the price of housing has eclipsed the income of many Americans—precipitating a critical housing crisis in some regions—and adding to inequality and a rising homeless population across the nation. Amidst this, we spend as much as 90% of our time indoors, often cut off from nature. While these challenges are daunting, thought leaders in the AEC industry increasingly see it as an opportunity to be at the forefront of change, with examples of design leadership across the country and around the world.

Technological gains within the built environment are making zero-carbon construction attainable, dramatic energy savings achievable and taller mass timber construction possible. Industry research, along with bold demonstration projects, is expanding the sector’s understanding of carbon sequestration, life cycle assessment (LCA), Passive House principles, and biophilic and health-centered design. In this course you’ll learn from design teams who are embracing these strategies and delivering solutions that begin to address some of the most pressing global challenges of our times.

Register

Backup Power for Commercial Buildings

This On Demand CEU is a recorded presentation from a previously live webinar event. When the local power grid goes down a commercial building built today might incorporate backup power to be more resilient, to mitigate against financial losses, to protect life safety, to provide vital services, or some combination of these goals. This course covers this important topic, exploring the motivations for using backup power, relevant code and standard requirements, and the fuel options for backup power generators.

Register

How to Calculate the Wood Carbon Footprint of a Building (Print Course)

Are we able to dive deeper into these numbers to find ways to reduce a building’s carbon footprint in meaningful ways? What are the methods used to measure building material carbon footprint and do they tell the whole story? Are there simple tools to assess material choices? This course seeks to address these and other questions by explaining the principal methods and tools that are used to assess carbon footprint in the context of building materials.

It includes a primer on product terminology, including life cycle assessment (LCA), environmental product declarations (EPDs), carbon footprint, embodied carbon, and whole building LCA (WBLCA) tools. It explains how biogenic carbon is treated in standard LCA methodology and dives into the forest side of the equation, explaining basics of the sustainable forestry cycle. This course also highlights some ways to track and assure wood comes from sustainable forests in North America and why demand for wood products supports investment in forest management.

Register

Sales Blueprint for Building Pros

This paper lays out a proven sales process for building pros, regardless of company size or location. Learn the starting point to any good sale, qualifying or disqualifying leads and the steps to getting the final signature.

View Now

Analysis of Residential Energy Efficiency Upgrades

Making good decisions about improving an existing home's energy efficiency and lowering its energy costs can be challenging for a consumer. Homeowners, builders, contractors, and weatherization agencies have a wide range of energy efficiency upgrades to choose from, each with different benefits and costs.

This course compares the popular upgrades and systems available to help you make the best choice for your projects and is intended to serve as a guide to answer questions about prioritizing energy efficiency investments for existing homes. By closely examining a study commissioned by the Propane Education and Resource Council, the “Analysis of Energy Efficiency Upgrades for Existing Homes,” this course will provide objective information about the most effective measures and/or equipment choices across five climate regions in the United States.

Register

Architectural Stone Veneer: What Works and What Doesn't

As the aesthetics and reliability of manufactured stone veneer (MSV) has improved, the market for this exterior cladding has increased exponentially. In the last five years, manufactured stone has consistently appeared at the top of our annual Cost vs. Value report as a remodeling project with one of the highest ROI. And it’s increasingly common on homes and light commercial offices, hotels.

However, with the increasing market opportunity comes increased risk for contractors installing it. Like any exterior cladding, manufactured stone must be installed over a drainage plane that directs water down and out, away from the wall. How is this done for MSV? What does code require and what changing developments will affect building practices?

View Now

Keeping Tradition Alive: Resilient Benefits of Polymeric Exteriors

The session involves a brief discussion of the basic how-and-why of traditional neighborhoods, including iconic platting elements like small front yards and public spaces, and the design of individual units with an eye on the block-face to achieve harmonious streetscapes. This program will touch on various elements of sustainability, Green, OSHA requirements, fire safety, wind load, and other general code matters associated with vinyl siding and trim.

Register